Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 206
  • Home
  • Print this page
  • Email this page
Year : 2016  |  Volume : 2  |  Issue : 1  |  Page : 17-21

Application of three-dimensional printing in the resection of giant tumor of the thoracic cavity and the reconstruction surgery of chest wall

1 Institute of Digital Medicine, Biomedical Engineering College, Third Military Medical University, Chongqing 400038, China
2 Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
3 Department of Computer Science, Biomedical Engineering College, Third Military Medical University, Chongqing 400038, China

Correspondence Address:
Shaoxiang Zhang
Institute of Digital Medicine, Third Military Medical University, Chongqing 400038
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2226-8561.182297

Rights and Permissions

Objective: To evaluate, the feasibility and efficacy of three-dimensional (3D) digital navigation, 3D design, and 3D printing in the surgical treatment of giant tumors in thoracic cavity. Patients and Methods: A 62-year-old male patient had a giant tumor in the left thoracic cavity. The tumor constricted the left lobe with the left chest wall being involved. We performed high-precision consecutive thin-sectional computed tomography (CT) scanning and obtained the 3D model of the tumor, lung, pulmonary, tracheobronchial tree, sternum, ribs, and costal cartilage with self-developed 3D image processing software. Before surgery, we also carried out digital navigation, printed out the tumor and the chest wall that is intended to be reconstructed, and developed the surgery program for the giant tumor. At the same time, 3D chest wall titanium was produced based on 3D printing. We performed giant tumor resection and sutured the titanium plate to the chest wall of the patient to repair the chest wall defect. After surgery, we performed CT scans and 3D reconstruction in order to determine the efficacy of surgical treatment. Results: The results showed that we successfully designed the repair surgery program for chest wall defect after the tumor resection. Titanium based on the 3D printing-assisted design completely fit the chest wall defect. Blood loss was significantly reduced compared to conventional titanium suture. There were fewer postoperative complications, and patient recovery was fast. Conclusion: We conclude that 3D printing-assisted resection of tumors in the thoracic cavity and chest wall reconstruction contributes to developing surgery program and performing complex thoracic surgery, which improves the efficacy of surgery, shortens the operation time, reduces the abrasion of conventional steel implant to the residual sternum, ribs, chest wall muscle and pleura, decreases the bleeding, abnormal breathing, and achieves the developmental shift to digital and personalized cardiothoracic surgery.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded204    
    Comments [Add]    

Recommend this journal