Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 657
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 4  |  Issue : 1  |  Page : 27-34

Effect of a semiconstrained elastic integrated cervical artificial disc on the cervical motion


1 Department of Orthopaedic Surgery, Institute of Digital Medline, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
2 Department of Orthopaedic Surgery, Institute of Digital Medline, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
3 Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
4 Keck Medical Center, University of Southern California, Los Angeles, CA, USA

Correspondence Address:
Liming Wang
Department of Orthopaedic Surgery, Nanjing Medical University Nanjing Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/digm.digm_1_18

Rights and Permissions

Background and Objectives: Cervical total disc replacement (TDR) is a novel dynamically stabilizing technique for the symptomatic cervical intervertebral segment. While the long-term effect of mainstream cervical nonconstrained artificial disc group (CNAD) does not match the theoretical effects of mobility preserving and neural decompression. The cervical semiconstrained elastic integrated artificial disc (CSID) may be a more reasonable design. However, beneficial or adverse effects of this design have not been measured and data for biomechanical effect are unavailable. The aim of this study is to assess the biomechanical effect of CSID on the segmental motion at implanted and adjacent levels. Methods: This study was supported by medical science developmental funding of Nanjing (20,000 dollars). Eight cadaveric C3–T1 specimens were loaded in flexion/extension (F/E), axial rotation (AR), and lateral bending (LB) with CSID, CNAD, and anterior fusion (AF) implanted at C5–C6 level alternatively. The range of motion (ROM), neutral zone (NZ), and elastic zone (EZ) at implanted and adjacent levels were measured. The mean values of parameters in the intact specimen group (INT), CSID group, CNAD group, and AF group were compared statistically (n = 8). Results: There was no significant difference of ROM, NZ, and EZ at implanted and adjacent levels between CSID and INT in F/E, AR, and LB (P > 0.05). CNAD caused a significant change of EZ in F/E and LB and ROM in LB at implanted level. Meantime, CNAD caused ROM increasing at adjacent levels (P < 0.05). AF caused the most significant changes of ROM, NZ, and EZ in F/E, AR and LB, compared to CSID and CNAD (P < 0.05). Conclusions: The semiconstrained elastic integrated design of cervical artificial disc may mimic of physiological disc's biomechanical effects on segmental kinematics at implanted and adjacent levels more closely, compared to nonconstrained discs and AF. CSID disc may reduce the acceleration of postTDR degeneration at the implanted and adjacent levels due to this promoted biomechanical performance. CSID disc could be a potential candidate for future cervical artificial intervertebral prosthesis studies.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed839    
    Printed55    
    Emailed0    
    PDF Downloaded90    
    Comments [Add]    

Recommend this journal